Chris Greaves
The Landfall Garden House
60 Canon Bayley Road; PO BOX 1452 Bonavista; CANADA A0C 1B0
709-218-7927
Chris Greaves
709-218-7927

Contents WhatFaq.doc
2Addin

3Introduction

4The INI File

5Code Notes

5Self-Testing Procedures

5Self-Delimiting Strings

6Sequence of Loading AddIns

6Tuesday, December 07, 2021

7Wednesday, December 08, 2021

10The INI file

11Decision Tables

11At Load Time

11At Quit Time

11Thursday, December 09, 2021

12Working Version

14After-Shocks

15Appendix - Properties

Addin

This standalone-project is destined to be lodged as a module within Normal.dot. The code manages the insertion and removal of Addins in the MSWord environment.
My practice is to use the leftmost five characters of a file name as an application’s generic code; so you will see “SecondAddin” reduced to “Secon” and “FirstAddin” reduced to “First” within specific parts of this application.

Introduction

I have fourteen user applications in my Word2003\StartUp folder, and eleven toolbar menus on my screen.

[image: image1.png]
Some of these applications I use several times per day. Others ("BillT", "Proje") are used once a week or less.
I am looking at reducing the time to load MSWord and starting useful work, amongst other things,
This application can take you as far as not requiring the Word Startup folder at all.
At startup the INI file is searched for all keys prefaced with “Toggle”. Such keys have a project name as part of the key name, and the filename to the project as the key value. Thus:-
[AddIn]
ToggleBillT=T:\Greaves\Products\USER\Billt\Billt084.dot
ToggleProje=T:\Greaves\Products\DEVEL\Proje\Proje165.dot
The INI File
[image: image2.png]
Here is the INI file with entries for our two simple Addins.
The generic key is “Toggle”, and I should probably have this in its own section. The specific key is the generic key with the 5-character code for the template.

The value is a self-delimiting string that tells the full name of the Addin and its status in the Tools, Addins dialogue box.
Code Notes
Self-Testing Procedures
I try to build self-testing procedures based on Waite’s ideas. You will see that many (hopefully, ALL) of my utility procedures have stored at the foot of the procedure a small macro.

Drag the three or four lines outside the procedure and de-comment them. Run the macro. It should execute a series of “Debug.Assert” commands without a hitch.

Once I have satisfied myself that the procedures passes its acceptance tests, I make modifications, then re-run the acceptance test. Only then do I add extra lines to the acceptance test and run the macro again.

Now the procedure us modified, still passes its previous acceptance tests, and as well passes the enhanced acceptance tests.

I comment the macro and drag it back inside the procedure.

Function blnEqualCI(strOne As String, strTwo As String) As Boolean
' Equal XE "Equal" CASE-INSENSITIVE comparison
blnEqualCI = (UCase(strOne) = UCase(strTwo))
'Sub TESTblnEqualCI()
' Debug.Assert blnEqualCI("", "")
' Debug.Assert blnEqualCI("a", "a")
' Debug.Assert blnEqualCI("a", "A")
' Debug.Assert blnEqualCI("A", "a")
' Debug.Assert blnEqualCI("A", "A")
' Debug.Assert blnEqualCI("ALPHA", "alpha")
' Debug.Assert Not blnEqualCI("", "a")
' Debug.Assert Not blnEqualCI("a", "")
' Debug.Assert Not blnEqualCI("", "A")
' Debug.Assert Not blnEqualCI("A", "")
' Debug.Assert Not blnEqualCI("alph", "alpha")
'End Sub
End Function
Self-Delimiting Strings

I make use of self-delimiting strings. Another idea based on Waite.

ToggleProje=,T:\Greaves\Products\DEVEL\Proje\Proje166.dot,False

Such a string carries its delimiter as the first or left-most character of the string.

A generalized routine can unpack such a string by extracting the left-most character of the string and using that character as the definition of the delimiter.

Consider a text file of records where practically any character can be present in any field in any record. A constant delimiter may not work for the entire file, but the code that assembles the records can use as a field delimiter any character that does not appear in any of the fields in that one record.

Sequence of Loading AddIns
Order in which global addins are loaded
“Global templates (add-ins) are loaded in reverse alphabetic order, after Normal.dot.” So Normal.dot is loaded first, so any “autoexec” within Normal.dot will execute before any global templates are loaded.
In theory, an “autoexec” macro within Normal.dot might find global templates listed within the Addins collection, but those templates ought not be fully loaded yet, just labels on pigeon-holes waiting to be filled.
Tuesday, December 07, 2021

In MSWord the addins are controlled through two channels:-

(a) Through the dialogue in Tools, Addins. The user can en/disable declared addins, remove them from the list, or Browse to add in extra addins
(b) Externally by means of placing templates in the Word Startup folder, or by renaming or deleting declared addins.
An application to control addins has no control over the second channel, so the logic of the application must be:-
(a) At the time the application is loaded, update a record file from the Addins collection.

(b) At the time the application is unloaded, update a record file from the Addins collection.

The records file belongs to our addins application; it is currently defined as part of the INI file.
Note that the concept of the application is to do away with the startup folder. If that is the case, what have we gained by using the Tools, Addins dialogue?
I have not examined this previously, but if non-startup elements of the Addins set do not remain checked on, my use for Addins might be to preserve the closing settings until the opening session.
Wednesday, December 08, 2021

I have removed my Word Startup folder completely. All six templates in the pane are housed in (six) separate folders other than my Startup folder. (In truth I created a brand new folder and pointed to it as Startup, so that Word didn’t to revert to some existing folder it remembered via the registry)
My understanding of (DOT) addins is:-
(a) If they are in the Startup folder they will be loaded and enabled automatically by Word at the time that Word is loaded, and before control is handed to the user.
(b) If they are in folder(s) other than Startup, the Addin templates will appear in the Tools Addins list but they will be disabled at the time that Word is loaded.
The standard policy then is “If you want your addins to be available all the time, store them in the Startup folder; otherwise you will have to enable them manually, one by one, through the Tools Addins dialogue box as soon as Word gives you control.
If that is so then I understand why five of the six templates arrive disabled.
UW.dot used to live in my startup folder - it is used in almost every Word application that I develop. Why is it enabled in the user’s Tools Addins dialogue box. UW.dot is stored as “T:\Greaves\Products\DEVEL\Libraries\UWD\UW.DOT”, and “T:\Greaves\Products\DEVEL\Libraries\UWD\” is not my startup folder; nowhere near it!
My supposition is that as a developer I gave my Normal.dot (via Tools, Reference) a reference to the file “T:\Greaves\Products\DEVEL\Libraries\UWD\UW.DOT”, and that Word2003 recognizes this and enables the same reference in Tools Addins.
Does this sound correct?

If so, then, if the Normal.dot template developer (“Charles Kenyon”) includes a VBE Tools, References to a template, then that developer template will be visible to the user “Chris Greaves”.
I find that weird.
I have tested my theory loosely.
[image: image3.png]
In the VBE I inspect the developer’s Tools, References. Normal.dot has a reference to UW.dot (the hypothetical maestro developer “Charles Kenyon”)
[image: image4.png]
I invite the developer to include a VBE Tools, Reference to a second useful template (Heuristics).
We save all documents, exit Word2003 and then reload Word.
Now the user (Chris Greaves) sees a reference to “Heuristics” in the user interface of Tools Addins.
[image: image5.png]
My conclusion: If a developer makes use of a template (VBE Tools, references) that template will be visible [b]and available[/b] to the end-user - unless the developer does some very clever stuff in VBA.
The INI file

ToggleUnder=,T:\Greaves\Products\USER\UnderW\Under494.dot,True
ToggleMcGhi=,T:\Greaves\Products\USER\McGhie\McGhi016.dot,True
ToggleProje=,T:\Greaves\Products\DEVEL\Proje\Proje166.dot,True
ToggleUFile=,T:\Greaves\Products\USER\UFiles\UFiles007.dot,True
ToggleInfor=,T:\Greaves\Products\USER\Infor\Infor440.dot,True
ToggleMRUse=,T:\Greaves\Products\USER\MRUse\MRUse595.dot,True

(a) At the time the application is loaded, update a record file from the Addins collection.

(b) At the time the application is unloaded, update a record file from the Addins collection.

We can run this code through a module modAddin within Normal.dot.
Decision Tables
At Load Time

Triggered by the Normal.dot macro AutoExec.

	In the INI file
	NOT In the INI file
	

	Set the Addin enabled flag from the INI file record (T/F)
	Load the record to the INI file with the enabled flag (T/F)
	In the Addins collection

	Remove the record from the INI file
	n/a This file is outside our range/domain.
	NOT In the Addins collection

At Quit Time
Triggered by the Normal.dot macro AutoExit.

	In the INI file
	NOT In the INI file
	

	Set the INI file record (T/F) from the Addin enabled flag
	Load the record to the INI file with the enabled flag (T/F)
	In the Addins collection

	Remove the record from the INI file
	n/a This file is outside our range/domain.
	NOT In the Addins collection

The user remains in control of the Tools, Addin pane. Our business is solely to keep track of the Enabled flags and set them at load time as they were left at quite time of the previous session.

We make changes only to our INI file.

We need slave routines:-

(a) Load an array from the INI file

Dim strAr() As String
Call LoadAddinsFromINI(strAr)

(b) Load an array from the addins collection

Dim strAr() As String
Call LoadArrayFromAddins(strAr)

(c) Remove a record from the INI array
(d) Add a record to the INI array from the Addins array
(e) Write the INI array to the INI file
Thursday, December 09, 2021
I have a working version but am still coping with after-shocks
Working Version

This document contains a module “modAddin” dragged from my Normal.dot. You can try running the module from this document, or you can drag the module into your own Normal.dot. Use at your own risk, of course.
I changed my direction several times in my trial to see how avoiding use of a Startup folder affects the timing of MSWord2003. I have not had enough experience with the new setup to do timing, although a couple of times seem to have been blindingly fast.
(a) I have done away altogether with my Startup folder. It is gone.

(b) I have retained access to all my beloved MSWord application templates.

(c) I still use the Tools, Addin pane to ring in, or out, beloved templates.

(d) The only real difference is that the modAddins code remembers the settings (“Installed”, or if you prefer “Enabled”) from the Tools, Addins pane, and restores the settings at the time Word is loaded, so that they appear to be global addins from a Startup folder.

This solution is more elegant than my earlier ideas of Making XE "Making" a menu-bar on the Standard toolbar, building my own GUI form interface, hijacking the Tools, Addins dialogue box, and so on.
[image: image6.png]
Here is my Tools Addins pane right now. It looks just as it did before, but a week ago, all those templates were stored in the Startup folder. Now they are in their individual project folders, and they can be switched off and on without having to be pulled and pushed as files from the Startup folder.

Once everything is settled down (see “After-Shocks”) I will be able to check any application off, or on again, with impunity.

After-Shocks
(1) I have had to formalize my file naming scheme. My project files have a five-letter identifier and a three-digit version number, so my “McGhie” project, a user application, is currently held in the file “McGhi016.dot”, but my one-click indexer application is also a template for developers, so while there is a file “Indxr250.dot”, that is the previous version; the latest version is held in “Indxr.dot” so that every application that makes use of the engine within the Indexer application can refer to “Indxr.dot”. When I decide to update the Indexer I shall remain “Indxr.dot” to be “Indxr250.dot”.
(2) Because a half-dozen developer templates have been renamed, more than a dozen user applications have to be opened and within the VBE, Tools, references must be adjusted. This process will continue as I gradually call in different applications over the next month. Hence “After-Shocks”.
(3) This project has cost me hours of time, much more time than I will save by a miniscule speedup in each load of Word, but I have learned a lot.
(4) I have a few bugs still to be ironed out. You can read them in the WhatFaq.doc; use the WhatFAQ macro “SubTableAlign” to sort the table into a useful sequence.
(5) Changes to references in VBE will be required whenever I retreat, even temporarily, to a non-current version of an application
(6) As well as the Tools, References hurdles, I am as well using my day-to-day utilities as much as possible in an effort to locate any weak spots. For example, instead of running “CleanParagraphs” towards the end of the day, I will run it before closing a document.
[image: image7.png]
Here is my set of toolbars this morning. Please compare them to the image at the head of this document.

Except that I have “dropped” BillT and Trail, everything looks and operates in the same manner. The unseen difference is that I can now ring-in, or out, any template and preserve its visibility across re-loads of MSWord.
Appendix - Properties

Complete list at https://www.codevba.com/Word/AddIn.htm

Autoload true if the specified add-in is automatically loaded when Word is started. Add-ins located in the Startup folder in the Word program folder are automatically loaded.

Dim booAutoload As Boolean
booAutoload = AddIns(1).Autoload

Compiled true if the specified add-in is a Word add-in library (WLL). False if the add-in is a template.

Dim booCompiled As Boolean
booCompiled = AddIns(1).Compiled

Index returns a Long that represents the position of an item in a collection.

Dim As Variant
AddIns(1).Index

Installed true if the specified add-in is installed (loaded). Add-ins that are loaded are selected in the Templates and Add-ins dialog box.

AddIns(1).Installed = True

Name returns the name of an add-in.

Dim strName As String
strName = AddIns(1).Name

Parent returns an object that represents the parent object of the specified Addin object.

Dim objParent As Object
Set objParent = AddIns(1).Parent

Path returns the location of an installed add-in.

Dim strPath As String
strPath = AddIns(1).Path

www.chrisgreaves.com
XXX, XXX 00, 0000
Page 1 of 25
DocNum: 10,263
AddIn008.doc
www.chrisgreaves.com
XXX, XXX 00, 0000
Page 15 of 30
DocNum: 10,262
AddIn008.doc

