
 Chris Greaves

 60 Canon Bayley Road; PO BOX 1452; Bonavista NL; CANADA A0C 1B0

 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 1 of 28

DocNum: 5,734 WhatFAQEnhances.doc

T:\Greaves\Products\DEVEL\OnTim\WhatFAQEnhances.doc

Contents

Contents ..1

The Background..3

Build and Testing Three Slave Macros...4

The Three Slave Macros ...4

Simple OnTime Host for Slaves and Timer..6

We Begin our March to Independence ...8

Move to Separate Modules Within Normal.Dot8

Timer Operating on Schedule ...9

Move to Separate Files Within the Templates Folder9

Test01..11

Test02..12

Test03..12

Test04..13

Test05..13

Test06..14

Test07..14

Move to Separate Files Within the Startup Folder..........................15

Test08..15

Test09..15

Test10..16

Test11..16

Test12..17

Test13..18

Test14..19

Test15..19

The Story so Far..21

Appendix: Reply to Hans..22

Appendix: On the Design of Microsoft Office26

Index ...27

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 2 of 28

DocNum: 5,733 WhatFAQEnhances.doc

This note addresses some (and only some) of the issues
involved in creating applications with independent
scheduling events, to be controlled by a single OnTime
statement in a template which is acting as a scheduler.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 3 of 28

DocNum: 5,733 WhatFAQEnhances.doc

The Background

Since 1967 I have held that Computers are good at doing
boring and repetitive tasks. Since around 1994 I have held
that if I want to do it, I should be able to program a
computer to do it. Since 2014 I have recognized than Alan
M. Turing said it better with his description of a Turing
Machine.

I have multiple applications that each depend on the
Application.OnTime method, yet Microsoft Word (2003)
allows only one OnTime event at a time. This poses a
problem “How to overcome the limitation of only on OnTime
event?

The solution is to wrest the OnTime event out of the hands
of the feckless Microsoft Word and write a better OnTime
processor.

My solution is to police all OnTime events through a single
procedure which maintains control over a text file. The text
file grows as claimant application append their timing
requests to the file, and the policing procedure takes its
direction from the file.

In essence “Take a Number”, or “Your call is important to
us, please stay on the line”.

For these essays I decide to start with the policing
procedure “OnTimerProcess” and three stripped-down
slave macros “ClockMacro”, “SaverMacro” and
“PlayerMacro”.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 4 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Build and Testing Three Slave Macros

Delete (and hence rebuild) Normal.dot.

Clear the Startup and Templates folders.

In the new Normal.dot a single module “modTimer” with
code for the timer and three slaves: Clock, Saver and
Player. All three macros work in that they speak, save, and
play.

Then test that each macro appends a recall statement to
the data file. The data file will be cluttered during this testing
process.

The Three Slave Macros

Sub ClockMacro()

 Dim strDateTime As String ' Execute our primary task

 strDateTime = Format(Now(), "hh:mm:ss")

 Call SpeakString(strDateTime)

 Dim dtRandom As Date ' Queue ourselves

 dtRandom = Date + TimeSerial(Hour(Now()), lngcClockIntervalMinutes +

(lngcClockIntervalMinutes * Int(Minute(Now()) /

lngcClockIntervalMinutes)), 0)

 Call AppendFileData(strGetDataFileName, "Normal.modTimer.ClockMacro"

& strcDelimiter & dtRandom)

End Sub

Sub SaverMacro()

 Documents.Save (True) ' Execute our primary task

 Dim dtRandom As Date ' Queue ourselves

 dtRandom = Date + TimeSerial(Hour(Now()), lngcClockIntervalMinutes +

(lngcClockIntervalMinutes * Int(Minute(Now()) /

lngcClockIntervalMinutes)), 0)

 Call AppendFileData(strGetDataFileName, "Normal.modTimer.SaverMacro"

& strcDelimiter & dtRandom)

End Sub

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 5 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Sub PlayerMacro()

 Dim strShell As String ' Execute our primary task

 strShell = """" & strcMediaPlayer & """ """ &

Application.StartupPath & "\" & strcAudioTrack & """"

 Shell strShell

 Dim dtRandom As Date ' Queue ourselves

 dtRandom = Date + TimeSerial(Hour(Now()), lngcClockIntervalMinutes +

(lngcClockIntervalMinutes * Int(Minute(Now()) /

lngcClockIntervalMinutes)), 0)

 Call AppendFileData(strGetDataFileName,

"Normal.modTimer.PlayerMacro" & strcDelimiter & dtRandom)

End Sub

Benchmark saved as Normal001.DOT.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 6 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Simple OnTime Host for Slaves and Timer

Sub OnTimerProcess()

'

' Collect the tasks from the list

'

 Dim strMacroDateTime As String

 strMacroDateTime = strGetFileData(strGetDataFileName)

 Call blnKillFile(strGetDataFileName) ' Voiding the file allows salve

macros to continue their appenadages.

 Dim strAr() As String

 strAr = Split(strMacroDateTime, vbCrLf)

 Call QSort(strAr, LBound(strAr), UBound(strAr), False)

'

' Locate and run all tasks up to NOW()

'

 Dim dtNextEvent As Date

 dtNextEvent = dtProcessEventsList(strAr)

'

' Recall ourselves at the next pending event

'

 If dtNextEvent < Now() Then ' we are already late for the next call!

 dtNextEvent = Now() + TimeSerial(0, 0, 5)

 Else ' we can afford to wait until the future dtEvent

 End If

 Application.OnTime when:=dtNextEvent, Name:=strcTimerMacroName,

tolerance:=lngcTolerance

End Sub

Test the OnTimer macro, running just one slave macro.
Check that the slave macro runs every one second (set by
its Constant)

Once each of the three slaves has been proved in isolation,
flush the time text file and run all three slave macros once.
Check that they repeat just once every minute.

Close all open documents and check that all three slave
macros continue to run at one-minute intervals when no
documents are active.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 7 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Open a document and check that all three slave macros
continue to run at one-minute intervals when a document is
active

Leave the saver at 1, set the player at 2, set the clock at 3-
minute intervals.

Benchmark saved as Normal002.DOT. This is an important
milestone because it proves that the concept of a single
operating system can be built around the scarce and
limiting resources of a single OnTime event in Microsoft
Word.1

1
 It has been my contention for twenty years that I should be able to do anything I want to do on a digital

computer. Alan M. Turing said it with greater elegance.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 8 of 28

DocNum: 5,733 WhatFAQEnhances.doc

We Begin our March to Independence

Our objective here is to isolate the timer in one document
(“Timer.doc”) and run slaves from different documents
(“Saver.doc”, “Clock.doc”, “Player.doc”). Justification arises
from the hundreds of hours invested in applications such as
MRUse and Player, and other applications, all of which use
the OnTime method but until now have not been able to
function in parallel.

Move to Separate Modules Within Normal.Dot

We begin the trek with all four macros in a single module in
the Normal.DOT template.

In theory three lines such as
“AppendFileData(strGetDataFileName,
"Normal.modTimer.ClockMacro" & strcDelimiter

& dtRandom” need to have the module name changed to

that of the specific slave procedure and that slave
procedure be moved to its module.

We copy the Clock macro from the module modTimer to the
module modClock. We should continue to hear the clock
speak out at 1-minute intervals.

We make the change, the clock chimes; we disable the
Clock macro in modTimer and make the changes one by
one to the remaining two slave macros.

With all three slave macros within their own modules we
have begun our slaves march away from the cozy nest in
Normal.dot modTimer.

Benchmark saved as Normal003.DOT.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 9 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Timer Operating on Schedule

We implement a simple scheme for processing the time text
file.

With Clock=1, Player=3 and Saver=7 minute intervals, the
Timer happily raises each task at is approximately allotted
time.

Normal.modClock.ClockMacro 02/09/2020 11:30:00 AM

Normal.modPlayer.PlayerMacro 02/09/2020 11:30:00 AM

Normal.modSaver.SaverMacro 02/09/2020 11:33:00 AM

Benchmark saved as Normal004.DOT.

Move to Separate Files Within the Templates Folder

We are working within the templates folder because we
chose to begin our trek from Normal.dot. Our reasoning is
that Normal.dot might provide the most likely place for initial
success, especially with code examples from the Word2003
help files.

An alternate starting location is from the StartUp folder, our
preferred location because we think of startup applications
as the core of our designs on and with Word2003. For
example, Playr049 and MRUse593 are stalwarts of our
Startup folder.

We create a new Clock.dot in our templates folder; we
know that Word knows of this folder because it has stored
Normal.dot in the folder.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 10 of 28

DocNum: 5,733 WhatFAQEnhances.doc

We drag copies of our Clock module (and our constants
module) from Normal.dot to Clock.dot, and we disable the
code in Normal.modClock.

Results of my first trial with the clock module in a separate
document.

Application.Run
MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Call ClockMacro ' works when Tools,
reference to proj.clock

Application.Run
MacroName:="projClock.modClock.ClockMacro"

' fails with Tools,
Reference

Application.Run "projClock.modClock.ClockMacro" ' fails with Tools,
Reference

Application.Run "'Clock.dot'!modClock.Clockmacro" ' Bad Parameter

Application.Run "'Clock.dot'.modClock.Clockmacro" ' Unable to run

Application.Run "'Clock.dot'!modClock!Clockmacro" ' Bad Parameter

Application.Run "Clock.dot!modClock.Clockmacro" ' Bad Parameter

Application.Run "Clock.dot.modClock.Clockmacro" ' Unable to run

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 11 of 28

DocNum: 5,733 WhatFAQEnhances.doc

I was all ready to document my successes and failures
when the first two lines in the above table, lines that had
failed to work initially suddenly worked! Was it the
implementation of the Tools references? I resolved to return
and try again with more stringent control, and
documentation.

Test01

Sub Test01()

On Error Resume Next

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run "'Clock.dot'!modClock.Clockmacro"

Application.Run "'Clock.dot'.modClock.Clockmacro"

Application.Run "'Clock.dot'!modClock!Clockmacro"

Application.Run "Clock.dot!modClock.Clockmacro"

Application.Run "Clock.dot.modClock.Clockmacro"

End Sub

My first test is with NINE Application.Run statements. All
statements fail because (1) the Clock macro was previously
and subsequently shown to operate (and announce the
time) and (2) the On Error statement causes continued
execution. Doubt this? Disable the On Error and run it
manually.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 12 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Test02

Sub Test02()

' On Error Resume Next

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run "'Clock.dot'!modClock.Clockmacro"

Application.Run "'Clock.dot'.modClock.Clockmacro" ’ Unable

Application.Run "'Clock.dot'!modClock!Clockmacro" ’ Unable

Application.Run "Clock.dot!modClock.Clockmacro"

Application.Run "Clock.dot.modClock.Clockmacro" ’ Unable

End Sub

My second tests disable the On Error and Tools references
the Clock.dot. Three of the nine statements fail. These
three are my experimental syntax of the Help files
examples.

Test03

Sub Test03()

' On Error Resume Next

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run "'Clock.dot'!modClock.Clockmacro"

' Application.Run "'Clock.dot'.modClock.Clockmacro"

' Application.Run "'Clock.dot'!modClock!Clockmacro"

Application.Run "Clock.dot!modClock.Clockmacro"

' Application.Run "Clock.dot.modClock.Clockmacro"

End Sub

My third test is a repeat of the second, but this time I
disable bad statements. Note that (1) On Error remains
disabled (2) the macro name has been changed to TEST03
and (3) all six statements appear to be valid with a Tools
reference to Clock.dot

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 13 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Test04

Sub Test04()

On Error Resume Next

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run "'Clock.dot'!modClock.Clockmacro"

' Application.Run "'Clock.dot'.modClock.Clockmacro"

' Application.Run "'Clock.dot'!modClock!Clockmacro"

Application.Run "Clock.dot!modClock.Clockmacro"

' Application.Run "Clock.dot.modClock.Clockmacro"

End Sub

For the fourth test I remove the Tools reference to Clock.dot
and enable the On Error. The macro TEST04 runs to
completion with nary a peep. Not one of the six statements
executed successfully.

Test05

Sub Test05()

' On Error Resume Next

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run "'Clock.dot'!modClock.Clockmacro"

' Application.Run "'Clock.dot'.modClock.Clockmacro"

' Application.Run "'Clock.dot'!modClock!Clockmacro"

Application.Run "Clock.dot!modClock.Clockmacro"

' Application.Run "Clock.dot.modClock.Clockmacro"

End Sub

For my fifth test the On Error statement is disabled and I
have restored the Tools reference to Clock.dot. All six
statements were successful.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 14 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Test06

Sub Test06()

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run "'Clock.dot'!modClock.Clockmacro"

Application.Run "Clock.dot!modClock.Clockmacro"

End Sub

For my sixth test I exit WinWord.exe, reload it, eliminate
known problem statements and run all six statements
successfully. I have retained the Tools, references to
Clock.dot

Test07

Sub Test07()

On Error Resume Next

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run "'Clock.dot'!modClock.Clockmacro"

Application.Run "Clock.dot!modClock.Clockmacro"

End Sub

The seventh test had me disable the Tools references; not
a peep.

I suppose that:-

(1) These six statements might be generally useful

(2) There may be other statements forms that could be
used, but I have not yet come across them.

(3) A reference to the application template (Clock.dot) from
Normal.dot appears to be essential. This does not appeal to
me. I do not want to register every application willy-nilly

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 15 of 28

DocNum: 5,733 WhatFAQEnhances.doc

(4) I may obtain better results by using the Startup Folder
for application templates.

Benchmark saved as Normal005.DOT.

Move to Separate Files Within the Startup Folder

TEST08 sees me move the application Clock.dot from the
Templates folder to the Startup folder. I open the Clock.dot
and run Clock macro to satisfy that it produces an audible
signal then close the Clock.dot template.

Test08

Sub Test08()

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run "'Clock.dot'!modClock.Clockmacro"

Application.Run "Clock.dot!modClock.Clockmacro"

End Sub

The eight test runs all six candidate statements
successfully.

Test09

Sub Test09()

On Error Resume Next

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run MacroName:="projClock.modClock.ClockMacro"

Application.Run "projClock.modClock.ClockMacro"

Application.Run "'Clock.dot'!modClock.Clockmacro"

Application.Run "Clock.dot!modClock.Clockmacro"

End Sub

TEST09 sees me quit Word, move Clock.dot out of the
Startup folder. All six statements failed, evidenced by On
Error Resume Next and not a sound from the Clock macro.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 16 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Test10

TEST10 is a simple confirmation test: I quit Word, move
Clock.dot back to the startup folder and hear six statements
speak the time.

I suppose that:-

(5) An application in the Startup folder can have its
Application.Run from Normal.dot.

How about running OnTime?

Test11

Sub Test11()

Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="projClock.modClock.ClockMacro"

'''' Application.OnTime (when:=Now(),

Name:="projClock.modClock.ClockMacro")

'''' Application.OnTime (Now(), "projClock.modClock.ClockMacro")

Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="modClock.ClockMacro"

Application.OnTime when:=Now() + TimeSerial(0, 0, 5), Name:="ClockMacro"

End Sub

For TEST11, the Clock.dot is in the startup folder, but the
application is not opened, nor is it Tools, Referenced from
Normal.dot.

The statements highlighted in red indicate syntax errors.
These two statements are parenthesized versions of the
first statement.

I suppose that:-

(6) Despite the syntax shown at the top of the help files
(expression.OnTime(When, Name, Tolerance),
parentheses cannot be used to surround the parameters of
the OnTime command

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 17 of 28

DocNum: 5,733 WhatFAQEnhances.doc

The three statements that execute use successfully broader
specifications of the macro. The third statement might well
pick up a ClockMacro in some other application in the
Startup folder.

Test12

Sub Test12()

' Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="projClock.modClock.ClockMacro"

' Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="modClock.ClockMacro"

' Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="ClockMacro"

Application.OnTime Name:="projClock.modClock.ClockMacro", when:=Now() +

TimeSerial(0, 0, 5)

End Sub

For TEST12 I introduce the second of my six statements.
Note that the first three statements are disabled because
“Word can maintain only one background timer set by
OnTime. If you start another timer before an existing timer
runs, the existing timer is canceled.”. I could leave them
enabled and allow Word’s OnTime to trample over itself, but
I prefer to keep things squeaky-clean for now.

I note with increasing despondency that although
Application has only two methods of running a user macro
(Run and OnTime), it manages to invent two descriptions
for the only shared parameter (“Name” and “MacroName”).
So far the position of named parameters is irrelevant.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 18 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Test13

Sub Test13()

Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="projClock.modClock.ClockMacro"

'''' Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

"projClock.modClock.ClockMacro"

Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="projClock.modClock.ClockMacro"

'''' Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

"projClock.modClock.ClockMacro"

'''' Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

"'Clock.dot'!modClock.Clockmacro"

'''' Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

"Clock.dot!modClock.Clockmacro"

End Sub

For TEST13 I bring in the six statements from TEST08,
these being the six candidates that passed the tests. I
modify these six for the OnTime method. Four of the
statements immediately disqualify themselves with Syntax
errors.

I suppose that:-

(7) The “Name” sentinel is a mandatory sentinel for the
OnTime method, but not for the Run method. I hope that
you are paying attention to all these rules.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 19 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Test14

Sub Test14()

Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="projClock.modClock.ClockMacro"

Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="modClock.ClockMacro"

Application.OnTime when:=Now() + TimeSerial(0, 0, 5), Name:="ClockMacro"

Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="projClock.modClock.ClockMacro"

Application.OnTime when:=Now() + TimeSerial(0, 0, 5),

Name:="modClock.ClockMacro"

Application.OnTime when:=Now() + TimeSerial(0, 0, 5), Name:="ClockMacro"

End Sub

Test14 provides six useable variants on two basic
candidates for the OnTime event

Test15

TEST15 is a repeat of TEST14 or any successful test.

I want to check that a startup application can CALL a
function in the OnTimer module in Normal.dot

I delete the OnTimer text file from the startup folder and re-
run TEST14, which has six OnTime calls.

Normal.modClock.ClockMacro 02/09/2020 4:27:00 PM

The clock speaks the time just once which is what we
expect from six rapid-fire OnTime statements, and the
OnTimer.txt text file has but on entry, indicating that the
Clock macro was entered only once.

(The possibility of multiple events in the communications file
is dealt with elsewhere)

At this point I know that:-

(1) I can RUN a Startup application macro from
NORMAL.DOT

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 20 of 28

DocNum: 5,733 WhatFAQEnhances.doc

(2) I can run a Startup application macro ONTIME from
NORMAL.DOT

(3) I can run a Normal Template function from an
application template in the Startup folder.

At this point we have made progress.

We believe that we can effect a simple OnTime operating
system under the constraints:-

(1) The operating system is housed in Normal.dot

(2) The slave applications are in the Startup folder

We can see our next two objectives:-

(3) The operating system is housed in some template other
than Normal.dot

(4) The slave applications are in some folder other than the
Startup folder.

Benchmark saved as Normal006.DOT.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 21 of 28

DocNum: 5,733 WhatFAQEnhances.doc

The Story so Far

We left our gallant heroes – Normal.dot in Templates and
Clock.dot in Startup – chatting with each other across a
gulf. Normal.dot had been archived as Normal006.dot. The
question now is: Can Normal(006).dot operate successfully
as an operating system if it is moved from Templates to
Startup? If so, then the timer and slaves can be shown to
operate from within Startup. We will have come a long way
from the four procedures huddled in a cramped module in
Normal.dot (Simple OnTime Host for Slaves and Timer)

As we have trekked, some of our companions have
dropped by the wayside; we might explore these failed
members to see if they succeed in a different environment.
OnTime and Run do seem inconsistent at times.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 22 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Appendix: Reply to Hans

[quote]I get the same error, [/quote]Hans, thanks for this
confirmation; at least I know I am not yet a Senile etc.

[quote]Mbut why do you want to use two different
documents for this? [/quote]I don’t, actually. I want to use
dozens, ten at least.

“Timer” is a stripped down operating system which polices
tasks to be run at different times.

“Player is just one such slave task. I have others :grin: such
as “Saver”, “Clock”, “Record” and so on. Including Word
documents to launch Excel workbooks, DOS batch files,
System32 commands and so on.

“Clock” wants to be woken up as regular as clockwork on
every five (or ten, or M) minute interval so that it can
announce the time.

“Saver” will save all open documents every one, two, three
or four minutes. (A facsimile of my MRUse application_

“Player”, (“BigPlayer” when it is all dressed up), grabs the
Duration of an MP3 file from the metadata, issues the file to
WinAmp, and then requests Timer that it (Player) be woken
up after lngDuration seconds, at which event Player grabs a
different track, duration, plays it and goes to sleep again.
Player’s sleep times are based on a file’s duration, and
appear as random lengths to Timer.

“Record” will wake up and record the temperature (or
survey what you are doing right now or M)

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 23 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Unlike MSWord (with one OnTime event) or Excel (ten
events), Timer can accommodate as many scheduled tasks
as you like and remembers them across reboots of Word or
Windows and can be implemented as a simple module in
any existing Word (or Excel or PPT or Outlook or M)
application.

[quote]BTW, in PlayerMacro, you should open the text file
for Output, not for Input, since you want to write a file to it.
[/quote]Thanks. I am senile after all! I have changed it to
Open Output,

(later) Mystery Solved, sort of.

I have previously noticed that (Word2003)
Application.OnTime works to completion only if the target
document is active. For example, my big baby, the proper
player, wakes up and does WinAmp, but only if that player
document is Active. If I Alt-Tab to my memoirs and start
documenting my day, Memoirs.doc is active and Player.doc
is not active, and the OnTime code does not find the Player
macro, shrugs its shoulders, and slips off to the pub,
without telling anybody.

The Application.Run appears to exhibit the same behaviour.

I set a breakpoint on each of the “intFile = FreeFile”
statements (one in Timer, one in Player) and then re-ran
the Player macro from VBE, first making sure that the Timer
document was active.

When I arrived at the breakpoint in Timer, I made the
Player.doc active before F5-ing Timer.

Ten seconds later I was at the breakpoint in Player; made
Timer.doc active and F5, worked like a charm, as long as I
remembered to make each target document active with an
Alt-Tab. (so much for automation).

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 24 of 28

DocNum: 5,733 WhatFAQEnhances.doc

I had previously circumvented this activation problem with
BigPlayer by dropping BigPlayer.doc into the startup folder.

Dropping Timer and Player into the startup folder did not
resolve today’s local problem. I must manually switch
between active documents for the scheme to work, even if
the two documents are in the startup folder.

My help files suggest Application.Run "'My

Document.doc'!ThisModule.ThisProcedure". I cannot
understand the weird syntax; the single quotes obviate the
need for a change of delimiter from period to exclamation.

The help files also say “If you specify the document name,
your code can only run macros in documents related to the
current context— not just any macro in any document.”,
which might be Microsoft’s way of saying “This won’t work if
the target document is not active”.

If so that suggests to me that back in pre-1997 the
programmer assumed that the target macro would always
be in the ActiveDocument. That there would be only one
OnTime event, and that the target macros had better be in
the OnTime project.

Which leaves the puzzle of why we would bother to specify
the document name (in any form)

I tried four variations on Application.Run
"'T:\Greaves\Startup\Word\Timer.doc'!modTimer.Timer
Macro"

(1) & (2) With and without the document path

(3) & (4) Using the recommended exclamation mark and
the wistful period.

All four combinations failed.

This is something to sleep on.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 25 of 28

DocNum: 5,733 WhatFAQEnhances.doc

If I load the FullName document name into the text file I can
automate the Document.Activate process to let the macro
run, but that will cause me to type some of my memoirs into
whichever application is woken up at that time.

(later still) “Application.Run

MacroName:="Normal.Module2.Macro1" suggests that it
might work in Normal. I move modTimer to my Normal.dot
and close my Timer.dot and change the description in my
Application.Run.

(still later still) I have embarked on a trek, starting with all
four micros in one module in Normal.dot, and gradually
weaning them further and further away to see how far I can
go while maintaining an OpSys with three slave applications
that wake up on time.

Sulks

Chris

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 26 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Appendix: On the Design of Microsoft Office

That Microsoft Office was designed badly is not open for
argument.

At the top design level separate teams were established for
each application (Word, Excel, PowerPoint etc) and at the
second level applications included patched-in third party
code (for example the saveasHTML code in Word97); at the
third level each contributing third-party had its own
standards. So we see so-called un-trappable errors in
MSWord, and varying limits (ten OnTime events in Excel
but only one in Word). There is no limit on the number of
OnTime events in PowerPoint because PowerPoint(2003)
does not provide an OnTime method.

We are not surprised to see two statements near-identical
to the user named “Run” and “OnTime” (both cause a user-
macro to be run) rather than “Run” and “RunOnTime”).

We are not surprised to see two statements near-identical
to the user, one where the macro is identified as “Name:=”
and the other identified as “MacroName:=”.

Likewise we should not be surprised at the inconsistent
syntax of "'Clock.dot'.modClock.Clockmacro".

Think “hundreds of programmers not talking with each
other” and then you’ll have no problems working with
around Microsoft Office products.

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 27 of 28

DocNum: 5,734 WhatFAQEnhances.doc

Index

~~~A~~~ 
Activate, 25 

Active, 23, 24 

Alan, 3, 7 

AppendFileData, 4, 5, 8 

Appendix, 1, 22, 26 

Application, 3, 5, 6, 10, 11, 

12, 13, 14, 15, 16, 17, 18, 

19, 23, 24, 25 

~~~B~~~ 
Begin, 1, 8

Benchmark, 5, 7, 8, 9, 15, 20

BigPlayer, 22, 24

Build, 1, 4

~~~C~~~ 
Call, 4, 5, 6, 10 

CALL, 19 

Check, 6 

Chris, 25 

Clock, 3, 4, 8, 9, 10, 11, 12, 

13, 14, 15, 16, 17, 18, 19, 

21, 22, 26 

Close, 6 

Collect, 6 

Computers, 3 

Constant, 6 

Contents, 1 

~~~D~~~ 
Date, 4, 5, 6

Delete, 4

Design, 1, 26

Disable, 11

Document, 4, 24, 25

Dropping, 24

Duration, 22

~~~E~~~ 
Error, 11, 12, 13, 14, 15 

Excel, 22, 23, 26 

Execute, 4, 5 

~~~F~~~ 
Files, 1, 9, 15

Folder, 1, 9, 15

Format, 4

FreeFile, 23

FullName, 25

~~~G~~~ 
Greaves, 24 

~~~H~~~ 
Hans, 1, 22

Host, 1, 6, 21

Hour, 4, 5

~~~I~~~ 
Including, 22 

Independence, 1, 8 

Input, 23 

~~~J~~~ 
Justification, 8

~~~L~~~ 
LBound, 6 

Leave, 7 

Likewise, 26 

Locate, 6 

~~~M~~~ 
Machine, 3

MacroName, 10, 11, 12, 13,

14, 15, 17, 25, 26

Macros, 1, 4

Memoirs, 23

Minute, 4, 5

Modules, 1, 8

Move, 1, 8, 9, 15

MRUse, 8, 22

MSWord, 23, 26

Mystery, 23

~~~N~~~ 
NINE, 11 

Normal, 1, 4, 5, 8, 9, 10, 14, 

16, 19, 20, 21, 25 

NORMAL, 19, 20 

Note, 12, 17 

Number, 3 

~~~O~~~ 
Office, 1, 26

OnTim, 1, 2, 3, 6, 7, 8, 16,

17, 18, 19, 20, 21, 23, 24,

26

ONTIME, 20

Open, 7, 23

Operating, 1, 9

OpSys, 25

Outlook, 23

Output, 23

~~~P~~~ 
Player, 3, 4, 5, 8, 9, 22, 23, 

24 

PowerPoint, 26 

~~~Q~~~ 
QSort, 6

Queue, 4, 5

~~~R~~~ 
Recall, 6 

Record, 22 

Referenced, 16 

Reply, 1, 22 

Results, 10 

Resume, 11, 12, 13, 14, 15 

RunOnTime, 26 

~~~S~~~ 
Save, 3, 4, 8, 9, 22

Schedule, 1, 9

Senile, 22

Separate, 1, 8, 9, 15

Shell, 5

Simple, 1, 6, 21

Slave, 1, 4, 6, 21

Solved, 23

SpeakString, 4

Split, 6

Chris Greaves 709-218-7927

www.chrisgreaves.com Monday, February 10, 2020 Page 28 of 28

DocNum: 5,733 WhatFAQEnhances.doc

Start, 1, 4, 5, 9, 15, 16, 17,

19, 20, 21, 24

Story, 1, 21

String, 4, 5, 6

Sulks, 25

Syntax, 18

~~~T~~~ 
Template, 1, 4, 9, 15, 20, 21 

Test, 1, 4, 6 

Thanks, 23 

Think, 26 

ThisModule, 24 

ThisProcedure, 24 

Timer, 1, 6, 8, 9, 21, 22, 23, 

24, 25 

TimeSerial, 4, 5, 6, 16, 17, 

18, 19 

Tolerance, 16 

Tools, 10, 11, 12, 13, 14, 16 

True, 4 

Turing, 3, 7 

~~~U~~~ 
UBound, 6

Unable, 10, 12

Unlike, 23

~~~V~~~ 
Voiding, 6 

~~~W~~~ 
WinAmp, 22, 23

WinWord, 14

Within, 1, 8, 9, 15

Word, 3, 7, 9, 15, 16, 17, 22,

23, 24, 26

